Volume: 7, Issue: 12 Page: 154- 171 **YEAR: 2025**

International Journal of Academic Research in Business, Arts and Science (IJARBAS.COM)

Knowledge and Practice of Existing Guidelines for the Management of Obstetric Complications among Healthcare Providers in Selected Health Facilities, Kwara State, Nigeria

AUTHOR(S): IJAIYA Zainab Bimpe (Ph.D), FADARE, Risikat Idowu (Ph.D), ADERIBIGBE Olusegun (Ph.D), AKPOR Oluwaseyi Abiodun, AFOLAYAN Ishaq Ajibola (M.Sc), JOS Tawakalitu Oluwabunmi

Abstract

This study assessed the level of knowledge and practice of existing guidelines for the management of obstetric complications among healthcare providers in selected primary and secondary healthcare facilities in Kwara State, Nigeria, and examined the relationship between socio-demographic characteristics guideline utilization. A descriptive survey design was employed among 150 nurses and midwives selected through a multistage sampling technique. Data were collected using a validated and reliable structured questionnaire and analyzed with SPSS version 25 using descriptive and inferential statistics. Results showed that healthcare providers demonstrated an overall high level of knowledge and practice of obstetric management guidelines, particularly in the management of postpartum haemorrhage, obstructed labour, uterine rupture, and cord prolapse. However, notable gaps were identified in knowledge and practice related to pre-eclampsia and eclampsia, including diagnostic criteria and management. Inferential pharmacological analysis statistically significant relationships between healthcare providers' age, professional qualifications, and years of experience, and both their knowledge and practice of existing guidelines (p < 0.05). The study concludes that although guideline awareness and application are generally strong among healthcare providers in Kwara State, targeted capacity-building interventions are required to address identified deficiencies. Strengthening continuous professional education, mentorship, and access to updated guidelines is essential

IJARBAS

Accepted 5 December 2025 Published 18 December 2025 DOI: 10.5281/zenodo.17981781

Published By

International Journal of Academic Research in Business, Arts and Science (IJARBAS.COM)

to ensure consistent, evidence-based obstetric care and to improve maternal health outcomes.

Keywords: Obstetric complications, Clinical guidelines, Healthcare providers, Knowledge, Practice, Maternal health,

About Author

Author(S): IJAIYA Zainab Bimpe (Ph.D)

Department of Basic Nursing, College of Nursing Sciences, University of Ilorin Teaching Hospital, Ilorin, Kwara State.

FADARE, Risikat Idowu (Ph.D)

Department of Nursing Sciences, Afe Babalola University, Ado - Ekiti, Ekiti State. fadareri@abuad.edu.ng

ADERIBIGBE Olusegun (Ph.D)

Federal University of Health Sciences Ila-Orangun, Osun State/Federal Teaching Hospital Ido-Ekiti

AKPOR Oluwaseyi Abiodun

Department of Nursing, Saint John Regional Hospital Saint John New Brunswick, Canada Oluwaseyi-abiodun.akpor@hirizonnb.ca

AFOLAYAN Ishaq Ajibola (M.Sc)

University of Ilorin Teaching Hospital Ilorin, Kwara State/ Faculty of Nursing Sciences, Afe Babalola University, Ado-Ekiti

JOS Tawakalitu Oluwabunmi

College of Nursing Sciences, Ilorin, Kwara State.

Introduction

Health systems rely on clearly defined models of care to guide the organization and delivery of services in ways that promote best practice, efficiency, and improved health outcomes. A model of care provides a structured framework that outlines how services should be delivered to specific populations as they move through different stages of health and illness, and it is applicable across diverse healthcare settings (Brereton et al., 2017). Within maternal health services, models of care are particularly critical because they support coordinated clinical decision-making, effective case management, and timely referrals across levels of care. Healthcare providers are therefore expected to possess adequate knowledge of, and competence in applying, established care models and clinical guidelines to ensure safe and effective management of obstetric conditions (Akute et al., 2024) The purposeful alignment of human, material, and organizational resources within a functional care model enhances the capacity of health systems to meet patient needs, support healthcare workers, and achieve sustainable service delivery outcomes.

Maternal mortality remains a major public health challenge globally, despite improvements recorded in recent decades. The World Health Organization defines maternal mortality as the death of a woman during pregnancy or within forty-two days of termination of pregnancy from causes related to or aggravated by pregnancy or its management (WHO, 2018). Women and newborns are most vulnerable during labour, delivery, and the immediate postpartum period, with a substantial proportion of deaths resulting from preventable obstetric complications (Kumar et al., 2022). Common direct causes include postpartum haemorrhage, pre-eclampsia and eclampsia, obstructed labour, sepsis, uterine rupture, and complications of unsafe abortion, while indirect causes such as anaemia further compound risks (WHO, 2022). Evidence indicates that late presentation, delayed or inappropriate referral, inadequate clinical skills, and poor adherence to management guidelines contribute significantly to adverse maternal outcomes, particularly in low-resource settings (Sharma et al., 2024; Ameh et al., 2021). Effective implementation of emergency obstetric and newborn care, supported by functional referral systems and skilled healthcare providers, has therefore been identified as a cornerstone for reducing maternal and neonatal morbidity and mortality (Dominico et al., 2022).

In Nigeria and similar contexts, the structure of the healthcare delivery system places primary health care facilities as the first point of contact, with referrals to secondary and tertiary facilities for advanced management when complications arise (WHO, 2022). However, weak referral systems, poor communication, inadequate transportation, and inconsistent adherence to clinical guidelines often undermine the effectiveness of this hierarchy. Studies have shown that delayed referrals and prolonged stays at referring facilities are associated with poor maternal and fetal outcomes (Akaba & Ekele, 2018). Obstetric emergencies such as obstructed labour and uterine rupture remain prevalent in low-resource settings, largely due to limited access to skilled care, suboptimal use of tools such as the partograph, and inappropriate use of uterotonics (Ayenew, 2021). The Three Delays Model further highlights how delays in decision-making, reaching appropriate facilities, and receiving timely care interact to increase the risk of maternal death (Ope, 2020; Gbenag-Epebinu et al., 2023). Addressing these delays requires not only community-level preparedness but also competent healthcare providers who are knowledgeable and consistent in applying evidence-based guidelines.

Kwara State has implemented initiatives such as the Emergency Obstetric and Newborn Care Model to strengthen the capacity of healthcare providers and improve maternal outcomes (Ameh et al., 2021). Nevertheless, maternal mortality ratios in the state remain a concern, reflecting ongoing gaps in service delivery and quality of care. While existing guidelines for the management of obstetric complications are available, their effective utilization depends largely on the knowledge, experience, and practice patterns of healthcare providers. The findings of this study demonstrate that although overall knowledge and practice of obstetric management guidelines among healthcare providers are high, significant variations exist based on age, professional qualification, and years of experience. These disparities underscore the need for continuous training, supportive supervision, and system-

International Journal of Academic Research in Business, Arts and Science (IJARBAS.COM)

Email: editor@ijarbas.com , editor.ijarbas@gmail.com Website: ijarbas.com

Menational Journal of the Market State of the

wide reinforcement of guideline-based care. Understanding how healthcare providers apply existing guidelines within the referral system is therefore essential for improving maternal health outcomes and strengthening obstetric care in Kwara State.

The study aimed to assess the level of knowledge and practice of existing guidelines for the management of obstetric complications among healthcare providers and to examine the relationship between their socio-demographic characteristics and the use of these guidelines. The specific objectives of the study were:

- 1. To assess the level of healthcare providers' knowledge of existing guidelines for the management of obstetric complications.
- 2. To evaluate the level of healthcare providers' practice of existing guidelines in managing obstetric complications.
- 3. To examine the relationship between healthcare providers' socio-demographic characteristics and their knowledge of existing obstetric care guidelines.
- 4. To determine the relationship between healthcare providers' socio-demographic characteristics and their practice of existing guidelines for obstetric complication management.

Methods and Materials

A descriptive survey research design was used. The target population for this study is 150 healthcare providers in selected primary and secondary healthcare centres. The sample size was determined using (Fisher's formula) single population proportion formula.

The following assumptions are considered

n = Minimum sample

Z =Standard normal deviate set at 1.96 (that corresponds to 95% confidence interval)

$$n = \frac{Z^2 p(1-p)}{d^2}$$

d = Desired degree of accuracy set at 0.05

p = 9.62% proportion of the healthcare providers with a high-level referral for umbilical cord prolapse as a component of knowledge and practice of healthcare providers using existing guidelines on the management of obstetric complications (Nsemo et al., 2022).

$$n = \frac{1.96 \times 1.96 \times 0.096 \times 0.904}{0.0025}$$
= 133.4

Total sample size (n) = n/r

= 133.4 / 0.90

=148.2

Approximately = 150

The calculated minimum sample size with the non-response rate is 150 healthcare providers. A detail of the proportional distribution of health workers is in Table 1

Table 1: Proportional Distribution Table

Site	Calculation	Sample
Kwara south		
Offa	45/501*150	13.47 = 14
Ifelodun	48/501*150	14.37 = 14
Irepodun	68/501*150	20.36 = 20
Kwara Central		•
Ilorin west	231/501*150	69.16 = 69
Ilorin south	70/501*150	20.95 = 21

International Journal of Academic Research in Business, Arts and Science (IJARBAS.COM)

Email: editor@ijarbas.com , editor.ijarbas@gmail.com Website: ijarbas.com

Menational Journal of Market State of The St

Kwara North		
Edu	20/501*150	5.988 = 6
Kaima	20/501*150	5.988 = 6
Total		150

The study employed a multistage sampling technique to ensure that participants were representative of the three senatorial districts in Kwara State and that the characteristics relevant to the research questions were adequately captured. At the first stage, a cluster sampling approach with total enumeration was used to include all three geopolitical zones of the state - Kwara South, Kwara Central, and Kwara North comprising a total of sixteen local government areas. In the second stage, simple random sampling was applied to select specific local governments from each zone in proportion to their size: three local governments from Kwara South (Offa, Ifelodun, and Irepodun), two from Kwara Central (Ilorin West and Ilorin South), and two from Kwara North (Edu/Pategi and Kaima). The third stage involved the random selection of health facilities within the selected local governments, with particular attention given to facilities that had registered nurses and midwives providing maternity services. In several instances, only one or two facilities met this criterion and were therefore selected. At the final stage, purposive and convenience sampling was used to recruit respondents, as eligible participants were selected at their duty posts during data collection periods. This approach allowed the study to balance representativeness across the state with practical considerations related to workforce distribution in primary and secondary health facilities.

The study population for health care providers consisted of nurses and midwives involved in maternity care in the selected facilities. Inclusion criteria required participants to have at least six months of work experience in their current facility and to express willingness to participate in the study, ensuring that respondents had sufficient exposure to referral systems and obstetric care practices. Those on leave or unwilling to participate were excluded. Quantitative data were collected using a structured, self-administered questionnaire developed based on relevant literature and existing guidelines. The questionnaire was designed in clear and simple language to enhance comprehension and accuracy of responses. It was divided into sections covering socio-demographic characteristics, knowledge and practice related to referral systems and the management of obstetric complications, the functionality of primary health care centres in providing emergency obstetric care, and the availability and use of management guidelines. The instrument enabled the systematic collection of data aligned with the study objectives and facilitated the assessment of both knowledge and practice among healthcare providers.

To ensure rigor, the validity and reliability of the instrument were thoroughly addressed. Validity focused on determining whether the questionnaire adequately measured the intended constructs. Face validity was established through expert review by specialists in obstetrics and gynecology with research experience, who assessed the relevance, clarity, and appropriateness of the items and provided qualitative feedback. Content validity was further evaluated using Lawshe's content validity ratio, with a panel of at least five experts rating each item as essential or otherwise. Items meeting the recommended CVR threshold were retained, while expert and supervisory feedback informed revisions. Following validation, the instrument was pre-tested on 10% of the sample size in a comparable setting outside the study area to identify ambiguities and refine administration procedures. Reliability was

International Journal of Academic Research in Business, Arts and Science (IJARBAS.COM)

assessed using the split-half method, whereby questionnaire items were divided into oddand even-numbered sets and administered to respondents outside the study sample. Pearson correlation coefficients indicated strong internal consistency, with coefficients of 0.80 for healthcare providers and 0.77 for pregnant women, demonstrating that the instruments were sufficiently reliable for the study.

Data collection for healthcare providers involved obtaining institutional permissions from the Kwara State Ministry of Health and the State Primary Health Care Development Agency, followed by visits to selected facilities on weekdays. Participants were adequately informed about the purpose of the study, and informed consent was obtained prior to questionnaire administration. Data were collected over a six-month period, during which 150 healthcare providers completed the questionnaires under the supervision of the researcher. For data analysis, completed questionnaires were checked, cleaned, and analyzed using SPSS version 25. Descriptive statistics such as mean, median, standard deviation, and percentages were used to summarize the data, while inferential statistics tested study hypotheses. Chi-square tests, Fisher's exact tests, logistic regression, and t-tests were applied to examine relationships between socio-demographic characteristics and healthcare providers' knowledge and practice regarding obstetric complication management. A p-value of 0.05 or less was considered statistically significant, ensuring that conclusions drawn from the analysis were based on accepted standards of scientific rigor.

Ethical approval was obtained from the Kwara State Ministry of Health Ethics Committee (ERC/MOH/2023/07/138), and Kwara State General Hospital, Ilorin (GHI/IRC/246/VOL.1/114). Informed consent, voluntariness, confidentiality, and participants' right to withdraw without prejudice were strictly upheld throughout the study.

Results

Table 2: Demographic Characteristics of the Healthcare Providers

Frequency	%
22	14,7
54	36.0
50	33.3
24	16.0
	_
	_
37	24.7
110	73.3
3	2.0
	_
34	22.7
37	24.7
35	23.3
44	29.3
59	59.3
32	21.3
	22 54 50 24 37 110 3 34 37 35 44

International Journal of Academic Research in Business, Arts and Science (IJARBAS.COM)

11-15	17	11.3
≥16	42	28.0
v. Participants' Rank		
NOII	72	48.0
NOI	51	34.0
SNO	9	6.0
CNO	6	4.0
ADS	7	4,7
DDNS	5	3.3

Table 2 presents the demographic profile of the healthcare providers used for this study. The age group with a modal value (54, 36%) was 30 – 39 years and the age group less than 30 years had the lowest proportion (22, 14.7 %). The mean respondents' age was 39.09 ± 9.55 SD and the median age was 39 years. The distribution of the respondents based on their educational/ professional qualifications shows that 24.7% of the respondents had either of BSc or BNSc. Most of the respondents (73.3%) were either registered nurses or midwives. Only 2% of the participants had an MSc. About half of the respondents were Nursing Officer II, while 34% were Nursing Officer I. Also, the Senior Nursing Officer and Chief Nursing Officer constituted 6% and 4% of the respondents respectively. Deputy Director of Nursing Service and Assistant Director of Nursing Service constituted 3.3% and 4.7% of the respondents respectively. In addition, the distribution of respondents based on their years of experience in the health facilities indicates that 39.3% of the respondents have less than six years of experience, 21.3% have 6 to 10 years of experience, and 11.3% have 11 to 15 years of experience while 28% have over 15 years of experience.

Table 3: Level of healthcare providers' knowledge of guidelines for the management of

obstetric complications

Items	N	Yes		No		Mea	Remark
		f	%	f	%	n	
When to diagnose post-partum ha	emorr	hage	after ı	agina	l delive	ry	
200mls	150	125	83.3	25	16.7	1.83	High
500mls	150	78	52.0	72	48.0	1.51	Moderate
1000mls	150	121	80.7	29	19.3	1.80	High
2000mls	150	114	76.0	36	24.0	1.75	High
The drug of choice for active man	agemei	nt of t	he thi	rd stag	e of lak	our	•
Misoprostol	150	108	72.0	42	28.0	1.71	High
Ergomentin	150	106	70.7	44	29.3	1.71	High
Oxytocin	150	123	82.0	27	18.0	1.81	High
The most important component of	f active	man	ageme	ent to t	he thir	d stage	of labour
Control cord traction	150	126	84.0	24	16.0	1.84	High
Uterine massage	150	127	84.7	23	15.3	1.84	High
Administration of oxytocin	150	101	67.3	49	32.7	1.69	High
Cutting of the umbilical cord	150	116	77.3	34	22.7	1.77	High
The earliest sign of excessive bloo	d loss	•	,	•	•	•	•
Increase pulse rate	150	108	72.0	42	28.0	1.72	High
Low blood pressure	150	117	78.0	33	22.0	1.78	High

International Journal of Academic Research in Business, Arts and Science (IJARBAS.COM)

Email: editor@ijarbas.com , editor.ijarbas@gmail.com Website: ijarbas.com

Increase respiration	150	90	60.0	60	40.0	1.63	High
Low urinary output	150	121	80.7	29	19.3	1.81	High
Risk factors for post-partum Haem	orrha	ge					
Grand multiparous	150	112	74.7	38	25.3	1.75	High
Twin pregnancy	150	80	53.3	70	46.7	1.53	Moderate
Poly hydramnios	150	101	67.3	49	32.7	1.67	High
Hypotension in pregnancy	150	116	77.3	34	22.7	1.77	High
In Pre-eclampsia, there is							
Hypertension, proteinuna and	150	119	79.3	31	20.7		High
oedema occur after 20 weeks of						1.80	
gestation							
,	150	65	43.3	85	56.7	1.43	Low
proteinuna occurring after 20							
weeks of gestation							
Hypertension and proteinuna	150	87	58.0	63	42.0	1.58	Moderate
occurring after 20 weeks of							
gestation							
<i>y</i> 1	150	94	62.7	56	37.3	1.63	High
convulsion occurring after 20 weeks	3						
of gestation							
In eclampsia there is	1		1	I	T		1
, 1	150	58	38.7	92	61.3	1.39	
convulsions occurring after 20							Low
weeks of gestation							
Liver functions are not mandatory	150	71	47.3	79	52.7	1.47	Low
Magnesium sulphate is the drug of	150	67	44.7	83	55.3	1.45	Low
choice for convulsion							
Aldoment is the drug of choice for	150	61	40.7	89	59.3	1.41	Low
managing severe hypertension							
Obstructed Labour	T .	1	1		1 -		
Obstructed labour is a common	150	70	46.7	80	53.3	1.47	Low
cause of maternal mortality						1	
	150	110	73.3	40	26.7	1.76	High
prevented by the use of partograph							3
Caesarean section is a treatment of	150	145	96.7	5	3.3	2.01	High
choice						<u> </u>	
Episiotomy is a treatment option	150	101	67.3	49	32.7	1.67	High
Causes of Uterine Rupture			ı	_	ı	_	
Injudicious use of oxytocin	150	101	67.3	49	32.7	1.67	High
Obstructed labour	150	109	72.7	41	27.3	1.73	High
Fundal pressure in labour	150	78	52.0	72	48.0	1.52	Moderat
							e
Cord Presentation/Cord Prolapse		1		l	1	1	I
The foetal membrane is intact	150	92	61.3	58	38.7	1.61	High

International Journal of Academic Research in Business, Arts and Science (IJARBAS.COM)

Emergency caesarean section is a recommended for cord prolapse in early labour		104	69.3	46	30.7	1.88	High
Foetal distress is a possible complication	150	123	82.0	27	18.0	1.96	High
Marin Carl Off Daint		1 50					

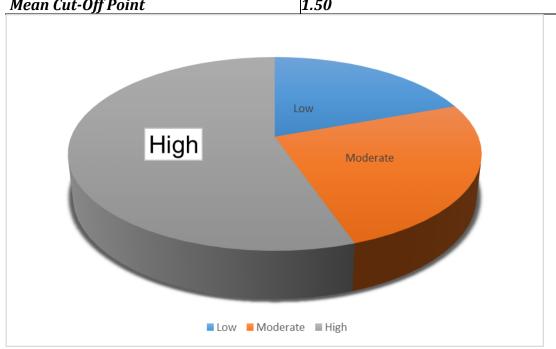


Figure 1: Healthcare providers' knowledge of existing guidelines for the management of obstetric complication

To determine the level of healthcare providers' knowledge of guidelines for the management of obstetric complications (Low, Moderate, and High), the mean score, frequency counts and percentage were used. The low practice level was determined by scores below the mean cutoff point (x < 1.50) while the moderate level was determined by the mean cut-off point (1.50 $\le x \le 1.59$) and the high practice level was determined by scores above the mean cut off (1.60 $\le x \le 3.00$). Table 2 shows the level of healthcare providers' knowledge of guidelines for the management of obstetric complications. Considering the mean cut-off point of 1.50, the healthcare workers expressed low knowledge of six out of 37 items. Also, they expressed moderate knowledge of four items and high knowledge of 27 items. This indicates that the overall level of healthcare providers' knowledge of guidelines for the management of obstetric complications was high

Table 4: Level of healthcare providers' practice of existing guidelines for the management of obstetric complication

Post-partum Haemorrhage	N	Yes No		No	No		Remark
		f	%	f	%	n	
Vital signs	150	124	82.7	26	17.3	1.83	High
Intravenous line	150	126	84.0	24	16.0	1.84	High
Urethra catheterization	150	127	84.7	23	15.3	1.85	High
Oxytocin infusion	150	91	60.7	59	39.3	1.61	High

International Journal of Academic Research in Business, Arts and Science (IJARBAS.COM)

Repeat oxytocin/pass misoprostol	150	146	97.3	4	2.7	1.97	High
Insert intrauterine balloon	150	139	92.7	11	7.3	1.93	High
tamponade	130						
Use Anti-shock garment	150	106	70.7	44	29.3	1.71	High
Get blood donors	150	105	70.0	45	30.0	1.70	High
Money	150	144	96.0	6	4.0	1.96	High
Get a vehicle	150	99	66.0	51	34.0	1.66	High
Inform the next level of care	150	135	90.0	15	10.0	1.90	High
Pre-Eclampsia And Eclampsia	1		•	•	1		T
Measure vital signs	150	84	56.0	66	44.0	1.56	Moderat e
Intravenous line	150	148	98.7	2	1.3	1.99	High
Catheterization	150	78	52.0	72	48.0	1.52	Moderat e
Anti-convulsant	150	101	67.3	49	32.7	1.67	High
Antihypertensive	150	75	50	75	50	1.50	Moderat e
Get blood donors	150	80	53.3	70	46.7	1.53	Moderat e
Get money	150	121	80.7	29	19.3	1.81	High
Get a vehicle	150	132	88.0	18	12.0	1.87	High
Informing the next level of care	150	94	62.7	56	37.3	1.63	High
Obstructed Labour							
Measure vital signs	150	110	73.3	40	26.7	1.73	High
An intravenous line	150	78	52.0	72	48.0	1.52	Moderat e
Antibiotics	150	95	63.3	55	36.7	1.63	High
Urethral catheterization	150	118	78.7	32	21.3	1.79	High
Get blood donors	150	124	82.7	26	17.3	1.82	High
Get vehicle	150	100	82.7	50	33.3	1.67	High
Inform the next level of care	150	101	67.3	49	32.7	1.67	High
Uterine Rupture							
Measure vital signs	150	85	56.7	65	43.3	1.57	Moderat e
Intravenous line	150	135	90.0	15	10.0	1.90	High
Urethral catheterization	150	83	55.3	67	46.7	1.55	Moderat e
Antibiotics	150	135	90.0	15	10.0	1.90	High
Get blood donors	150	126	84.0	24	16.0	1.84	High
Get money	150	114	76.0	36	24.0	1.76	High
Get a vehicle	150	139	92.7	11	7.3	1.50	Moderat e
Inform the next level of care	150	75	50.0	75	50.0	1.93	High
Cord Presentation/Cord Prolapse	•	•	•		•	•	

Cord Presentation/Cord Prolapse

International Journal of Academic Research in Business, Arts and Science (IJARBAS.COM)

Relief cord compression	150	89	59.3	61	40.7	1.59	Moderat
Kener cord compression							e
Managera vital signs	150	78	52.0	72	48.0	1.52	Moderat
Measure vital signs							e
Intravenous line	150	92	61.3	58	38.7	1.61	High
Urethral catheterization	150	106	70.7	44	29.3	1.71	High
Antibiotics	150	111	74.0	39	26.0	1.74	High
Getting blood donors	150	120	80.0	30	20.0	1.80	High
Money	150	108	72.0	42	28.0	1.72	High
Getting a vehicle	150	110	73.3	40	26.7	1.73	High
Inform the next level of care	150	106	70.7	44	29.3	1.71	High
Mean Cut-Off Point	•	1.50	•	•	•	•	

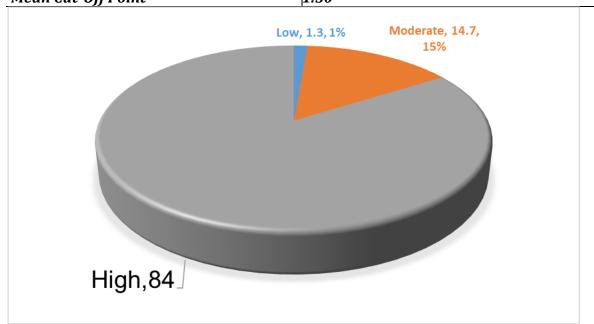


Figure 2: Healthcare providers' practice of existing guidelines for the management of obstetric complications

To determine the level of healthcare providers' practice of existing guidelines for the management of obstetric complications (Low, Moderate, High), the mean score, frequency counts, and percentage were used. The low practice level was determined by scores below the mean cut-off point (x < 1.50) while the moderate level was determined by the mean cut-off point ($1.50 \le x \le 1.59$) and the high practice level was determined by scores above the mean cut-off ($1.60 \le x \le 3.00$). The level of healthcare providers' practice of existing guidelines for the management of obstetric complications is presented in Table 4. Considering the mean cut-off point of 1.50, the table above showed that 10 items were considered to be moderately practised by the healthcare workers while 34 items were considered to be highly practised by the healthcare workers. This indicates that the overall level of healthcare providers' practice of existing guidelines for the management of obstetric complications was high. This is further illustrated in Figure 2.

Testing of Hypotheses

International Journal of Academic Research in Business, Arts and Science (IJARBAS.COM)

DARBAS DARBAS PROPERTY OF THE PROPERTY OF THE

Hypothesis 1: There is no significant relationship between healthcare providers'sociodemographic characteristics and their knowledge of using existing guidelines for the management of obstetric complications.

Table 5: Chi-Square test of healthcare providers' socio-demographic characteristics and their knowledge of using existing guidelines for the management of obstetric complication

Variable	Knowledge of using the existing guideline							
Age in Year	Low	Moderate	High	Fisher's	P value			
				test				
< 30	2(9.1%)	16(72.7%)	4(18.2)%					
30-39	0 (0%)	47(87.0%)	7(13.0%)	23.432	0.001*			
40-49	21(42.0%)	21(42.0%)	8(16.0%)					
50 and above	2(8.3%)	20(83.3%)	2(8.3%)					
Participant Qualifica	tion							
BSc/ BNSc	5(13.5%)	23(62.2%)	9(24.3%)	44.038	0.000*			
RN/RM	95(86.4%)	15(13.6%)	(0%)					
MSc	0(0%)	3(100%)	0(0%)					
Years of Experience is	n Health Faci	lities						
<u>≤</u> 5	11(18.6%)	37(62.8%)	11(18.6)					
6-10	2(6.2%)	26(81.3%)	4(12.5%)					
11-15	1(5.9%)	12(70.6%)	4(23.5%)	36.915	0.000*			
>15	0(0.0%)	22(52.4%)	20(47.6%)					

* *P*< 0.05, *Significant*;

The result in Table 5 shows that there is a significant relationship between the age of healthcare providers and their knowledge using existing guidelines for the management of obstetric complications (Fisher's exact test = 23.432; p = 0.001 < 0.05). Also, there is a significant relationship between healthcare providers' qualifications, years of years of experience in health facilities, and their knowledge of using existing guidelines for the management of obstetric complications. Thus, the hypothesis that there is no significant relationship between healthcare providers' socio-demographic characteristics and their knowledge of using existing guidelines for the management of obstetric complications is rejected.

Hypothesis 2: There is no significant relationship between healthcare providers' socio-demographic characteristics and practice existing guidelines for the management of obstetric complications.

Table 6: Chi-Square test of healthcare providers' socio-demographic characteristics and their practice of existing guidelines for the management of obstetric complication

Variable	The practic	The practice of existing guideline						
Age in Year	Low	Moderate	High	Fisher's test	P value			
< 30	12(54.5%)	10(45.5%)	0(0%)					
30-39	16(29.6%)	27(50%)	11(20.4%)	42.575	0.000*			
40-49	0(0%)	43(86.0%)	7(14.0%)					
50 and above	0(0%)	0(0%)	24(100%)					

Participant Qualification

International Journal of Academic Research in Business, Arts and Science (IJARBAS.COM)

BSc/BNSc	0(0.0%)	30(80.0%)	7((20.0%)	37.370	0.000*
RN/RM	2(1.8%)	104(94.6%)	4(3.6%)		
MSc	1(33.3%)	2(66.7%)	0(0.0%)		
Years of Experience in Health Facilities					
<u>≤</u> 5	4(6.8%)	48(81.4%)	7(11.8%)	8.969	0.011*
6-10	6(18.8%)	24(75.0%)	2(6.2%)		
11-15	3(17.6%)	11(64.8%)	3(17.6%)		
>15	3(7.2%)	35(83.3%)	4(9.5%)		

*Significant, P < 0.05

The result in Table 6 shows that there is a significant relationship between the age of healthcare providers and the practice of existing guidelines for the management of obstetric complications ($X^2 = 42.575$; P = 0.000 < 0.05). Also, the relationship between healthcare providers' qualifications, years of experience in health facilities, and practice of existing guidelines for the management of obstetric complications. Thus, the hypothesis that there is no significant relationship between healthcare providers' socio-demographic characteristics and the practice of existing guidelines for the management of obstetric complications is rejected.

Discussion of Findings

Findings from the study discovered that most of the respondents are between the age of 40 - 49 years (33.3%), Those with RN/RM qualifications (73.3%), years of practice of 16 years and above (29.3%), Years in a health facility 16 years and above (28.0%) The majority of the respondent's rank is 48.0%

Findings on the level of health care provider's knowledge of using existing guidelines for the management of obstetric complications from this study was high (55%). They expressed high knowledge in 27 items out of 37 items. This is contrary to the report from Molla et al., 2021 which stated that only 53.4% of respondents had good knowledge of AMTSL, only 42.7% of respondents answered correctly about the administration of the uterotonic drug as a critical element of AMTSL and 76.3% of providers responded that the time of cord clamping should be between 1 and 3 minutes (Molla et al., 2021). The difference between the reports could be associated with knowledge gaps and settings where the research work took place. In contrary to Tenaw et al., 2017 report, he stated that the level of knowledge and practice of obstetric care providers towards active management of the third stage of labour needs immediate attention of Universities and health science colleges better to revise their obstetrics course contents, health institutions and zonal health bureau should arrange training for their obstetrics care providers to enhance skill (Tekola et al., 2021; Tenaw et al., 2017). The contrary results could be due to knowledge gaps, study setting and management support system in training and re training of staffs (Abioye et al., 2024; Gbenga-Epebinu et al., 2020) In this study, the respondent demonstrated high knowledge of management of pre-eclampsia (79.3%) while in another study conducted by Olaoye et al., (2019), the respondents had average knowledge of pre-eclampsia. Sixteen of the respondents (14.5%) had a high level of knowledge, while 18(16.4%) had a low level of knowledge. These contrary results could be linked to knowledge gaps, and possibly the settings and sample size.

The report from this study reveals that there is a significant relationship between the age of healthcare providers and their knowledge using existing guidelines for the management of obstetric complications ($X^2 = 23.432$; P = 0.001 < 0.05). Also, the relationship between

healthcare providers' qualifications, years of experience in health facilities, and their knowledge of using existing guidelines for the management of obstetric complications. A report from Olaoye et al., (2019). also supported the report from their findings that there was a significant association between the respondents' knowledge of pre-eclampsia and years of service (p= 0.023). The Chi-square test also showed a significant association between years of service and respondents' knowledge of pre-eclampsia ($X^2=14.82$; p=0.022). The similarity of these reports could be linked to work experience of the health care providers at the settings. This study showed that 10 items were moderately practiced by the healthcare providers while 34 items were highly practiced by the healthcare providers. This indicates that the overall level of healthcare providers' practice of existing guidelines for the management of obstetric complications was high (84%). This report contradicts the study reported by Molla et al. (2021). They reported that only one-third of obstetric care providers had good practice during active management of the third stage of labour Only 32.3% of providers had good practice on AMTS and only 32.3 % of providers followed AMTSL steps appropriately which is in line with the study conducted in Sidama Zone (32.8%) higher than the study done in Sudan (26.7%) and (16.7%) Hawassa city, and lower than the studies conducted in Addis Ababa (47%), Nigeria (78%), and Netherlands (48%). The discrepancy might be due to knowledge gap, variation in study setting, and study participants. Another study that reported poor management practices on the appropriate medication, route, and dosage of medication for pre-eclampsia was carried out by Olaove et al., 2019. Another report from Komolafe et al., 2024 stated that there was low adherence to practice guidelines for the implementation of EmONC in state and tertiary hospitals, Findings also showed low adherence to practice guidelines in 70.8% of haemorrhage care, 52.0% of fetal distress care, 60.0% of prolonged obstructed labour care, and 44.4% of preeclampsia/eclampsia care. From this study, there is a significant relationship between the age of healthcare providers and the practice of existing guidelines for the management of obstetric complications (X^2 = 42.575; P = 0.000 < 0.05). Also, the relationship between healthcare providers' qualifications, years of experience in health facilities, and practice of existing guidelines for the management of obstetric complications is significant. This is also supported by the report of Molla et al study that Practice was significantly associated with work experience, knowledge, the

preparation. **Conclusion**

The study revealed that most healthcare providers were within the active working age group, predominantly registered nurses and midwives, with varying years of professional experience. Overall, healthcare providers demonstrated a high level of knowledge and practice regarding existing guidelines for the management of obstetric complications, particularly in areas such as postpartum haemorrhage, obstructed labour, uterine rupture, and cord prolapse. However, notable gaps were identified in specific aspects of knowledge, especially in the management of eclampsia and certain diagnostic criteria. The findings further showed statistically significant relationships between healthcare providers' age, professional qualifications, years of experience, and both their knowledge and practice of existing guidelines. These results indicate that while guideline awareness and application are generally strong, targeted improvements are required to address identified deficiencies and to ensure consistent, high-quality obstetric care across all provider categories.

presence of assistance during third-stage management, and time of uterotonic drug

Recommendations

- 1. Regular in-service training and refresher courses should be organized to strengthen healthcare providers' knowledge in areas with identified gaps, particularly in the management of pre-eclampsia and eclampsia.
- 2. Health authorities should ensure continuous access to updated obstetric management guidelines and protocols in all health facilities.
- 3. Mentorship and supportive supervision programs should be strengthened, especially for less experienced and lower-cadre healthcare providers, to improve guideline adherence.
- 4. Opportunities for professional development and higher education should be encouraged to enhance evidence-based practice among nurses and midwives.
- 5. Policy makers should integrate periodic monitoring and evaluation of guideline use into routine maternal health services to sustain high standards of obstetric care.

References

- Abioye, A.A., Owopetu, C.A., Adamu-Adedipe, F.O., Odesanya, L.O., & Olofin-Samuel, M.A. (2024). Anemia prevention among pregnant women. *International journal of nursing midwife and health related cases.* 10(12), 1-11.https://doi.org/10.37745/ijnmh.15/vol10n2111
- Akaba, G.O & Ekele, B.A. (2018). Maternal and fetal outcomes of emergency obstetric referrals to a Nigerian teaching hospital. *Trop Doc* 48(2):132-135. doi: 10.1177/0049475517735474. Epub PMID: 29108472. EMONC.
- Akute, Y.I., Elusoji, C.I., Munge M., Olawale, Y.A., & Olofin-Samuel, M.A. (2024). Collaboration Processes between skilled and traditional birth attendants on maternal and newborn care in Ekiti State. *Journal of Liaoning technical university (natural science edition)* 18(4), 189-204 https://www.lgjdxcn.asia/public_article.php?article=284
- Ameh, C., Allot, H. & Mohammad, H. (2021). *Emergency obstetric Care and Newborn Care: Training for Skilled health personnel.* Liverpool school of tropical medicine. Pembroke place, Liverpool L3 5QA. United Kingdom.
- Ayenew, A.A. (2021). Incidence, causes, and maternofetal outcomes of obstructed labor in Ethiopia: systematic review and meta-analysis. *Reprod Health* 18, 61 https://doi.org/10.1186/s12978-021-01103-0.
- Brereton, L., Clark, J., Ingleton, C., Gardiner, C., Preston, L., Ryan, T. & Goyder, E. (2017). What do we know about different Models of providing palliative care? Findings from a systematic review of reviews. *Palliat Med.* 31(9):781-797. doi: 10.1177/0269216317701890.
- Dominico, S., Serbanescu, F., Mwakatundu, N., Kasanga, M. G., Chaote, P., Subi, L. & Lobis, S. (2022). A comprehensive approach to improving emergency obstetric and newborn care in Kigoma, Tanzania. *Global Health: Science and Practice*, 10(2).
- Gbenga-Epebinu, M.A., Emordi, N.A., Olofinbiyi, R.O., Ogidan, O.C., Ayedun, T.O., and Aina, M.A. (2023). Determinants of Malaria Infection Among Under-Five Children in State Specialist Hospital, Ikere-Ekiti, Ekiti State, Nigeria, *British Journal of Multidisciplinary and Advanced Studies*: Health and Medical Sciences 4 (6),1-17 doi: https://doi.org/10.37745/bjmas.2022.0355
- Gbenga-Epebinu, M.A & Ogunrinde M.E. (2020). Qualitative Analysis of Factors Influencing Modern Contraceptives Use Among Couples in A Rural Settlement in Ekiti State,

International Journal of Academic Research in Business, Arts and Science (IJARBAS.COM)

Email: editor@ijarbas.com , editor.ijarbas@gmail.com Website: ijarbas.com

DARBAS DE LES

- Nigeria. *Commonwealth Journal of Academic Research*, 1(3), 66 73. DOI: 10.5281/zenodo.3883142
- Komolafe, A.O., Olajubu, A.O. Ijarotimi, O.A., Ogunlade, O.B., Olowokere, A.E., Irinoye, O.O. (2024). Adherence to Practice Guidelines in the Implementation of Emergency Obstetric and Newborn Care in Referral Hospitals in Osun State, Nigeria. *SAGE Open Nursing*. 10. doi:10.1177/23779608231226064.
- Kumar, A., Raj, D., Gupta, A. & Kumar, A. (2022). Assessment of knowledge of obstetric danger signs and its associated factors among pregnant women attending antenatal clinic of rural health training centre of a medical college: A cross-sectional study from *Rajasthan. J Family Med Prim Care*. (10):6487-6492. doi: 10.4103/jfmpc.jfmpc_774_22. PMID: 36618152; PMCID: PMC9810899.
- Molla, W., Demissie, A. & Tessema, M. (2021). Active Management of Third Stage of Labor: Practice and Associated Factors among Obstetric Care Providers in North Wollo, Amhara Region, Ethiopia. *Obstet Gynecol Int*: 9207541. doi: 10.1155/2021/9207541. PMID: 35003266; PMCID: PMC8741404.
- Olaoye, T., Oyerinde, O.O., Elebuji, O.J. & Ologun, O. (2019). Knowledge, Perception and Management of Pre-eclampsia among Health Care Providers in a Maternity Hospital. *Int J MCH AIDS*; 8(2):80-88. doi: 10.21106/ijma.275
- Ope, B.W. (2020). Reducing maternal mortality in Nigeria: addressing maternal health services' perception and experience. *Journal of Global Health Reports*. doi:10.29392/001c.12733
- Sharma, G., Molla, Y. B., Budhathoki, S. S., Shibeshi, M., Tariku, A., Dhungana, A., ... & Khadka, N. (2021). Analysis of maternal and newborn training curricula and approaches to inform future trainings for routine care, basic and comprehensive emergency obstetric and newborn care in the low-and middle-income countries: Lessons from Ethiopia and Nepal. *PloS one*, *16*(10), e0258624.
- Tekola, A. F., Baye, G., Amaje, E., & Tefera, K. (2021). Neonatal near misses and associated factors among mother's who give a live neonate at Hawassa City governmental hospitals, 2019: a facility based cross-sectional study design. *BMC pregnancy and childbirth*, 21, 1-9.
- Tenaw, Z., Yohannes, Z. & Amano, A. (2017). *Obstetric care providers'* knowledge, practice and associated factors towards active management of third stage of labor in Sidama Zone, South Ethiopia. *BMC Pregnancy Childbirth* 17, 292. https://doi.org/10.1186/s12884-017-1480-8
- WHO. (2022) Primary health care measurement framework and indicators: monitoring health systems through a primary health care lens (who.int)https://www.who.int/publications/i/item/9789240044210
- WHO. (2018). Recommendations: Uterotonics for the prevention of postpartum haemorrhage. Geneva: World Health Organization; Recommendations and supporting evidence. Available from: https://www.ncbi.nlm.nih. Gov/books/NBK535984

DARBAS

PLOTS & SIN STANSFEE

Cite this article:

Author(s), IJAIYA Zainab Bimpe (Ph.D), FADARE, Risikat Idowu (Ph.D), ADERIBIGBE Olusegun (Ph.D), AKPOR Oluwaseyi Abiodun, AFOLAYAN Ishaq Ajibola (M.Sc), JOS Tawakalitu Oluwabunmi, (2025). "Knowledge and Practice of Existing Guidelines for the Management of Obstetric Complications among Healthcare Providers in Selected Health Facilities, Kwara State, Nigeria", Name of the Journal: International Journal of Academic Research in Business, Arts and Science, (IJARBAS.COM), P, 154 - 171, DOI:

<u>www.doi.org/10.5281/zenodo.17981781</u>, Issue: 12, Vol.: 7, Article: 11, Month: **December**, Year: 2025. Retrieved from https://www.ijarbas.com/all-issues/

Published by

AND
ThoughtWares Consulting & Multi Services International (<u>TWCMSI</u>)

DARBAS TERMINATOR